ON TEICHMOLLER'S THEOREM ON THE QUASI-INVARIANCE OF CROSS RATIOS*

BY

IRWIN KRA

ABSTRACT

Teichmiiller's theorem gives necessary and sufficient conditions for mapping one ordered quadruple by a K-quasiconformal map onto a second ordered quadruple. We give a simple non-computational proof of the necessity part. We then characterize such extremal mappings, and obtain as a consequence a new formula for the modular function, which leads to a very simple derivation of the known expression for the Poincaré metric on the thrice-punctured sphere.

§1. Let (a_1, a_2, a_3, a_4) and $(a_1^*, a_2^*, a_3^*, a_4^*)$ be two ordered quadruples of distinct points in the extended complex plane, $C \cup \{ \infty \}$. Form the cross ratios

$$
\alpha = \frac{a_3 - a_1}{a_2 - a_1} \div \frac{a_3 - a_4}{a_2 - a_4}, \qquad \alpha^* = \frac{a_3^* - a_1^*}{a_2^* - a_1^*} \div \frac{a_3^* - a_4^*}{a_2^* - a_4^*}.
$$

(Of course, α is the image of a_1 under the Möbius transformation that sends a_3 , a_4 , a_2 to 0, 1, ∞ .)

The cross ratios are points in the twice-punctured plane $\mathbb{C}\setminus\{0, 1\}$. Let $\sigma(\cdot, \cdot)$ denote the non-Euclidean Poincaré distance on $C\setminus\{0,1\}$. It is obtained by projecting the Poincaré metric on the unit disc Δ

$$
\frac{1}{1-|z|^2}|dz|
$$

to C \{0, 1}. If the corresponding distance is denoted by $\rho(\cdot,\cdot)$, then by choosing a holomorphic universal covering map

$$
\pi\colon \Delta\to \mathbf{C}\backslash\{0,1\},\
$$

we have

* Research partially supported by NSF grant MCS 76-04969A01. Received August 4, 1977

$$
\sigma(a,b)=\inf_{\substack{z\in\pi^{-1}(a)\\ \zeta\in\pi^{-1}(b)}}\rho(z,\zeta).
$$

Further, if we fix any $z_0 \in \pi^{-1}(a)$, it is always possible to pick a $\zeta_0 \in \pi^{-1}(b)$ such that

$$
\sigma(a,b)=\rho(z_0,\zeta_0).
$$

It shall occasionally be more convenient to use the upper half plane U as the model for the universal covering of $C \setminus \{0, 1\}$ (recall that the Poincaré metric on U is given by $\left| \frac{dz}{z - \bar{z}} \right|$). We shall however use π and ρ to represent also the covering of $C \setminus \{0, 1\}$ by U and the distance in U, respectively. Similarly, we let Γ denote the covering group of π . This group can be described quite explicitly. We shall not need this description at all.

In the course of another investigation (that will be reported elsewhere), I came across a short proof of the "only if" part of the following important results of Teichmiiller.

THEOREM 1 (Teichm/iller [7], Ahlfors [2]). *There exists a K-quasiconformal automorphism of* $C \cup \{\infty\}$ *which maps the ordered quadruple* (a_1, a_2, a_3, a_4) *onto the ordered quadruple* $(a_1^*, a_2^*, a_3^*, a_4^*)$ *if and only if* $\sigma(\alpha, \alpha^*) \leq \frac{1}{2} \log K$.

PROOF. For subsequent use we reproduce a proof of the "if" part (see Ahlfors [3], Chapter III). Let A and A^* be Möbius transformations that send the ordered quadruples (a_1, a_2, a_3, a_4) and $(a_1^*, a_2^*, a_3^*, a_4^*)$ into the ordered quadruples $(0, 1, \alpha, \infty)$ and $(0, 1, \alpha^*, \infty)$, respectively (invariance of cross ratios under Möbius transformations). Let us choose points, τ , $\tau^* \in U$ such that

$$
\rho(\tau,\tau^*)=\sigma(\alpha,\alpha^*)=\tfrac{1}{2}\log K,
$$

and

$$
\pi(\tau)=\alpha,\ \pi(\tau^*)=\alpha^*.
$$

It suffices to produce a K-quasiconformal mapping of $C_{\alpha} = C \setminus \{0, 1, \alpha\}$ onto C_{α} = C\{0, 1, α ^{*}} that preserves the ordered triples.

Consider the complex plane C factored by the group of motions G_r generated by

$$
z \mapsto z + 1, \ z \mapsto z + \tau, \ z \mapsto -z.
$$

The factor space C/G_r is, of course, conformally equivalent to the sphere $\mathbb{C} \cup \{ \infty \}$. Observe that G_{τ} leaves invariant \mathbf{P}_{τ} , the plane punctured at the lattice points

$$
\frac{n}{2}+\frac{m}{2}\tau, n\in\mathbb{Z}, m\in\mathbb{Z},
$$

and that P_r/G_r is a sphere punctured at four points. Now the Weierstrass $%$ -function

$$
\mathfrak{P}(\tau,z) = \frac{1}{z^2} + \sum_{\substack{(n,m) \in \mathbb{Z}^2\\(n,m) \neq (0,0)}} \left[\frac{1}{(z-n-m\tau)^2} - \frac{1}{(n+m\tau)^2} \right]
$$

is invariant under G_r and maps P_r onto a sphere punctured at four points. It is necessary to evaluate the punctures: $\mathfrak{F}(0)$, $\mathfrak{F}(\frac{1}{2})$, $\mathfrak{F}(\tau/2)$, $\mathfrak{F}((1 + \tau)/2)$. Clearly $\mathfrak{B}(0) = \infty$. Set

$$
e_1 = \mathfrak{B}\left(\frac{1}{2}\right), \quad e_2 = \mathfrak{B}\left(\frac{\tau}{2}\right), \quad e_3 = \mathfrak{B}\left(\frac{1+\tau}{2}\right).
$$

It is known that the modular function on U defined by

$$
\lambda(\tau) = \frac{e_3 - e_1}{e_2 - e_1}
$$

is a holomorphic universal covering map of $\mathbb{C}\setminus\{0, 1\}$, and thus we may assume that $\lambda = \pi$. Thus to show that $C_{\alpha} = C\{e_1, e_2, e_3\}$, it suffices to prove that the ordered quadruple $\{e_1, e_2, e_3, \infty\}$ has cross ratio α . But this is precisely the meaning of the equation $\lambda(\tau) = \pi(\tau) = \alpha$.

We construct a K -quasiconformal automorphism of C by

(1)
$$
f(z) = \frac{(\tau^* - \overline{\tau})z + (\tau - \tau^*)\overline{z}}{\tau - \overline{\tau}}, \qquad z \in \mathbb{C}.
$$

Note that f has Beltrami coefficient $(=f_i/f_i)$ $(\tau-\tau^*)/(\tau^*-\bar{\tau})$ (of absolute value $\langle 1 \rangle$ and hence dilatation K. Further f fixes **R** and

$$
f(-z) = -f(z), f(z + \frac{1}{2}) = f(z) + \frac{1}{2}, f(z + \frac{\tau}{2}) = f(z) + \frac{\tau^*}{2}.
$$

These relations imply first that f maps P_7 onto P_7^* and that f conjugates G_7 into G_{τ} , and thus projects to a K-quasiconformal mapping of C_{α} onto C_{α} .

We are now going to prove the "only if" part. Consider the Banach space M of Beltrami coefficients; that is, M is the open unit ball in $L^{\infty}(C)$. Let $\|\cdot\|$ denote the norm in this Banach space. A basic theorem of Ahlfors-Bers [4] asserts that for each $\mu \in M$, there exists a unique quasiconformal automorphism w^* of $C \cup \{\infty\}$ with Beltrami coefficient μ that fixes the points 0, 1, ∞ . Further for fixed $z \in \mathbb{C}$,

$$
M\ni \mu\mapsto w^{\mu}(z)\in C
$$

is a holomorphic funtion. Now let $K(w^*)$ be the dilatation of the quasiconformal automorphism w^+ $(K(w^*) = (1 + ||\mu||)/(1 - ||\mu||))$. The Banach modelled manifold M has a Kobayashi metric d . It is quite elementary to see that (because M is a ball)

$$
d(\mu, \nu) = \frac{1}{2} \log K (w^{\mu} \circ (w^{\nu})^{-1}).
$$

Now, the Kobayashi metric on $C\setminus\{0,1\}$ agrees with the Poincaré metric (Kobayashi [6], Chapter IV). Hence any holomorphic mapping

$$
\varphi\colon M\,{\to}\, \mathbf{C}\backslash\{0,1\}
$$

is distance decreasing with respect to d and σ . Let (a, b, c) be three distinct points in C. Then

$$
\varphi_{abc}(\mu)=\frac{w^{\mu}(c)-w^{\mu}(a)}{w^{\mu}(b)-w^{\mu}(a)}
$$

defines a holomorphic map of M into $C\setminus\{0, 1\}$. Thus

$$
\sigma\left(\varphi_{abc}(\mu),\frac{c-a}{b-a}\right)\leq d(\mu,0)\leq \frac{1}{2}\log K
$$

provided that $K(w^*) \leq K$. Taking the distinct points $(0, 1, z)$, we see that

$$
\sigma(w^{\mu}(z),z) \leq \tfrac{1}{2}\log K, \quad \text{for } K(w^{\mu}) \leq K,
$$

which is enough to complete the proof of the theorem.

REMARKS. (1) We did not need to know the Kobayashi metric on M to obtain the above result. It sufficed to use the Poincaré metric on the discs in M of the form

$$
\left\{z\frac{\mu}{\|\mu\|};\,|z|<1,\mu\neq 0\right\}.
$$

(2) Agard [1] also proved the "only if" part of the above theorem by relying on an accurate formula for σ . Ahlfors' proof [3, Chapter III] is also more computational than the one given above. However, the Ahlfors proof is more elementary since it does not rely on the generalized Riemann mapping theorem (Ahlfors-Bers [4]).

§2. A quasiconformal automorphism w_0 mapping the ordered quadruple of distinct points (a_1, a_2, a_3, a_4) onto the ordered quadruple $(a_1^*, a_2^*, a_3^*, a_4^*)$ is called *extremal* if $K(w_0) \leq K(w)$ for all w with the same property.

THEOREM 2. *There exists an extremal mapping f taking the ordered quadruple* (a_1, a_2, a_3, a_4) *onto the ordered quadruple* $(a_1^*, a_2^*, a_3^*, a_4^*)$. This mapping has *dilatation* $K = \exp 2\sigma(\alpha, \alpha^*)$, *and Beltrami coefficient* $\mu = k\bar{\varphi}/|\varphi|$, where $k =$ $(K-1)/(K+1)$, and $\varphi(z)dz^2$ is a holomorphic quadratic differential on $C\cup\{\infty\}$ (*thus* φ *is a rational function*) with simple poles at a_1, a_2, a_3, a_4 . In particular, all *the extremal mappings are Teichmiiller mappings. The extremal mapping is unique if and only if for each* $\tau \in U$ with $\pi(\tau) = \alpha$ there is a unique $\tau^* \in U$ with $\pi(\tau^*) = \alpha^*$ *and* $\rho(\tau, \tau^*) = \sigma(\alpha, \alpha^*)$. In particular, there exists an $r>0$ *such that every Teichmüller mapping w with Beltrami coefficient to* $/|\varphi|$ with $|t| < r$ is the unique extremal taking $C \cup \{\infty\} \setminus \{a_1, a_2, a_3, a_4\}$ onto $\mathbb{C} \cup \{ \infty \} \backslash \{ w(a_1), w(a_2), w(a_3), w(a_4) \}.$

PROOF. We have shown the existence of an extremal f with $K(f)$ = $\exp 2\sigma(\alpha, \alpha^*)$. The function f constructed by formula (1) is a Teichmüller mapping since the constant function is a quadratic differential for G_r . Now assume that w is an extremal function, then $K(w) = \exp 2\sigma(\alpha, \alpha^*)$. Let us replace w by w_1 , which is a Teichmüller mapping in the same homotopy class as $w: \mathbb{C} \cup \{\infty\} \setminus \{a_1, a_2, a_3, a_4\} \rightarrow \mathbb{C} \cup \{\infty\} \setminus \{w(a_1), w(a_2), w(a_3), w(a_4)\}.$ Since w is homotopic to w_1 , $w(a_i) = w_1(a_i)$ for $j = 1, 2, 3, 4$. Since w_1 is a Teichmüller mapping $K(w_1) \leq K(w)$. Since $\sigma(\alpha, \alpha^*) = \frac{1}{2} \log K(w)$, $K(w_1) \geq K(w)$. By uniqueness of Teichmüller mappings (see, for example, Bers [5]) $w = w_1$. The dsicussion of $§1$ established the necessary and sufficient conditions for uniqueness of extremal mappings.

Now let ω be a fundamental domain for Γ centered at the origin (we are assuming Γ acts on Δ). Let r be chosen in such a way that the closed non-Euclidean ball of radius r is contained in the interior of ω . Thus r satisfies the conditions of the theorem.

AN IMPORTANT PROBLEM. Let Γ be a Fuchsian group operating on U. Let a, b, $c \in \mathbb{R}$ with $a \leq b \leq c$. Let μ be an extremal Beltrami coefficient for Γ with support in U. Then w^* is, of course, conformal in U^* , the lower half plane. In order to determine the Carethéodory metric on the Teichmüller space of Γ , it is important to evaluate

$$
\sup_{\substack{a, b, c \in \mathbf{R} \\ a < b < c}} \sigma\bigg(\frac{w^{\mu}(b) - w^{\mu}(c)}{w^{\mu}(a) - w^{\mu}(c)}, \frac{b - c}{a - c}\bigg).
$$

Estimates (lower bounds) for the above expression in terms of $K(w^*)$ would be helpful. Theorem 2 showed that the above supremum is less than $\frac{1}{2} \log K(w^{\mu})$ even in the one-dimensional Teichmüller spaces.

§3. Let us now fix our attention on the quadruple $(0,1,\alpha,\infty)$ with $\alpha \in \mathbb{C} \backslash \{0,1\}$. Then

$$
\frac{1}{\zeta(\zeta-1)(\zeta-\alpha)}d\zeta^2=\varphi(\zeta)d\zeta^2
$$

is a quadratic differential on $\mathbb{C} \cup \{\infty\}$ with simple poles at the four points: 0, 1, $\dot{\alpha}$, ∞ . Let $\mu = \bar{\varphi}/|\varphi|$. Thus μ is, of course, a Teichmüller differential of norm 1. For $z \in \mathbb{C}$, $|z| < 1$, we can form the normalized $z\mu$ -conformal automorphism of $C \cup \{ \infty \}$, $w^{z\mu}$. We have shown that for $|z|$ small

$$
\sigma(w^{z\mu}(\alpha), \alpha) = \frac{1}{2} \log \frac{1 + |z|}{1 - |z|} = \rho(z, 0).
$$

Let us now fix α and define $f(z) = w^{2\mu}(\alpha)$. Then

$$
f\colon \Delta \to \mathbf{C}\backslash \{0,1\}
$$

is a holomorphic function. Since Δ is simply connected, by the Monodromy theorem, there exists a holomorphic function $h : \Delta \to \Delta$ such that $\pi \circ h = f$. Now each of these three functions does not increase the Poincaré distance. Since $\sigma(f(0), f(z)) = \rho(0, z)$ for $|z|$ small, we conclude that for small $|z|$, we have $p(h(0), h(z)) = p(0, z)$. Hence by Schwarz's lemma h is a rotation. We have extablished the following result.

THEOREM 3. The function $z \mapsto w \zeta^{\mu}(\alpha)$ is a holomorphic universal covering *map of* $C \setminus \{0,1\}$ by Δ *that takes* 0 *into* α .

COROLLARY (Agard [1]). *The (infinitesimal) Poincaré metric on* $\mathbb{C}\setminus\{0, 1\}$ *is given by*

$$
g(\alpha)|d\alpha|,
$$

where

$$
g(\alpha) = \left(\frac{|\alpha||\alpha-1|}{2\pi}\int\int_{C} \frac{|d\zeta \wedge d\overline{\zeta}|}{|\zeta||\zeta-1||\zeta-\alpha|}\right)^{-1}.
$$

PROOF. The Poincaré metric on $C\setminus\{0, 1\}$ is defined by the invariant expression

$$
\frac{1}{1-|z|^2}|dz| = g(f(z))|df(z)|,
$$

where $f: \Delta \rightarrow \mathbb{C} \setminus \{0, 1\}$ is any covering map. Thus for our f and $z = 0$,

$$
g(\alpha)=|f'(0)|^{-1}.
$$

But (see Ahlfors-Bers [4])

$$
f'(0) = \frac{\partial w^{2\mu}(\alpha)}{\partial z}\bigg|_{z=0} = \frac{\alpha(\alpha-1)}{2\pi i} \int \int_C \frac{\mu(\zeta) d\zeta \wedge d\overline{\zeta}}{\zeta(\zeta-1)(\zeta-\alpha)}
$$

$$
= \frac{\alpha(\alpha-1)}{2\pi i} \int \int_C |\varphi(\zeta)| d\zeta \wedge d\overline{\zeta}.
$$

REFERENCES

1. S. Agard, *Distortion theorems for quasiconformal mappings,* Ann. Acad. Sci. Fenn. Ser. AI 413 (1968).

2. L. V. Ahlfors, The *modular [unction and geometric properties of quasicon[ormal mappings,* Proc. Minn. Conf. on Complex Analysis, Springer, 1965, pp. 296-300.

3. L. V. Ahlfors, *Lectures on Quasiconformal Mappings,* van Nostrand, New York, 1966.

4. L. V. Ahlfors and L. Bers, *Riemann's mapping theorem for variable metrics,* Ann. of Math. 72 (1960), 385-404.

5. L. Bers, *Quasicon[ormal mappings and Teichmiiller's theorem,* in *Analytic Functions* (R. Nevanlinna et al., eds.), Princeton Univ. Press, Princeton, New Jersey, 1960, pp. 89-119.

6. S. Kobayashi, *Hyperbolic manifolds and Holomorphic Mappings,* M. Dekker, New York.

7. O. Teichmfiller, *Extremale quasiconforme Abbildungen und quadratische differentiale,* Abh. Preuss. Akad. Wiss. 22 (1940), 1-197.

STATE UNIVERSITY OF NEW YORK AT STONY BROOK STONY BROOK, NEW YORK 11794 USA