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ON TEICHMOLLER'S THEOREM ON THE 
QUASI-INVARIANCE OF CROSS RATIOS* 

BY 

IRWIN KRA 

A B S T R A C T  

Teichmiiller's theorem gives necessary and sufficient conditions for mapping 
one ordered quadruple by a K-quasiconformal map onto a second ordered 
quadruple. We give a simple non-computational proof of the necessity part. We 
then characterize such extremal mappings, and obtain as a consequence a new 
formula for the modular function, which leads to a very simple derivation of the 
known expression for the Poincar6 metric on the thrice-punctured sphere. 

a* a* w Let (a~,a2, a3, a,)  and (a*, 2, 3, a*) be two ordered quadruples of 

distinct points in the extended complex plane, C U {~}. Form the cross ratios 

- -  m 
3 a = a3-a~__ . a3 a4 a *  = __a* a*  a * - a * .  

a 2 - a l  a 2 - a 4 '  a * - a *  " a * - a *  

(Of course, ct is the image of al under the M6bius transformation that sends a3, 

a4, a2 to 0, 1, o0.) 

The cross ratios are points in the twice-punctured plane C\{0, 1}. Let r  ) 

denote the non-Euclidean Poincar4 distance on C\{0,1}. It is obtained by 

projecting the Poincar4 metric on the unit disc A 

1 
1-1zl21&r 

to C \ {0, 1}. If the corresponding distance is denoted by p ( . , .  ), then by choosing 

a holomorphic universal covering map 

~r: a--*C\{O, 1}, 

we have 
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o - ( a ,b )=  inf p(z , f ) .  
zErr l(a) 
~E~r-l(b) 

Further, if we fix any z0E 7r '(a),  it is always possible to pick a fl0E 7r-'(b) such 

that 

o-(a, b) = p(zo, fro). 

It shall occasionally be more convenient to use the upper half plane U as the 

model for the universal covering of C \ {0, 1} (recall that the Poincar6 metric on U 

is given by Idz I/Iz - Y. I). We shall however use rr and p to represent also the 

covering of C \ {0, 1} by U and the distance in U, respectively. Similarly, we let F 

denote the covering group of 7r. This group can be described quite explicitly. We 

shall not need this description at all. 

In the course of another investigation (that will be reported elsewhere), I came 

across a short proof of the "only if" part of the following important results of 

Teichmiiller. 

THEOREM 1 (Teichm/iller [7], Ahlfors [2]). There exists a K-quasiconformal 
automorphism of C U {oo} which maps the ordered quadruple ( a,, a2, a3, a4) onto 

the ordered quadruple (a *, a ~, a *, a*) if and only if tr(a, a *) _-< �89 K. 

PROOF. For subsequent use we reproduce a proof of the "if" part (see 

Ahlfors [3], Chapter III). Let A and A * be Mbbius transformations that send 

the ordered quadruples (a,, a2, a3, a4) and (a*,, a~, a ] ,  a*4) into the ordered 

quadruples (0, 1, a, o0) and (0, 1, c~*, ~), respectively (invariance of cross ratios 

under Mbbius transformations). Let us choose points, ~-, r * E  U such that 

p(~-, ~-*) = ~ ( ~ ,  ~ * )  = �89 

and 

7~(~) = ~, ~ ( r * ) =  ,~*. 

It suffices to produce a K-quasiconformal mapping of Ca = C\{0, 1, a} onto 

Ca. = C\{0, 1, a*} that preserves the ordered triples. 

Consider the complex plane C factored by the group of motions G, generated 

by 

z~-,z+l, z~z+~ ,  z~-,-z. 

The factor space C / G ,  is, of course, conformally equivalent to the sphere 

C U {o0}. Observe that G, leaves invariant P~, the plane punctured at the lattice 

points 
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n m 
~ + ~ - r ,  n E Z ,  m ~ Z ,  

and that P , / G ,  is a sphere punctured at four points. Now the Weierstrass 
~3-function 

, , ]  
~3('r, z) = z'---~ (..,.)~z (z  - n - m z )  2 (n  +-re'r) z 

(n, m )# (o, O) 

is invariant under G, and maps P, onto a sphere punctured at four points. It is 

necessary to evaluate the punctures: ~'(0), ~(�89 ~(z/2) ,  ~((1 + r)/2). Clearly 

~(0) = ~. Set 

e , = ~ ( ~ ) ,  e 2 = ~ ( 2  ), e 3 = ~ ( ~ - - ~ ) .  

It is known that the modular function on U defined by 

r = e3 -  e, A 
e2  - -  e~ 

is a holomorphic universal covering map of C\{0, 1}, and thus we may assume 

that A = 7r. Thus to show that C~ = C \ { e l ,  e2, e3}, it suffices to prove that the 

ordered quadruple {e~,e2, e3, o0} has cross ratio a. But this is precisely the 
meaning of the equation A(z )=  7r(z)= a. 

We construct a K-quasiconformal automorphism of C by 

(1)  [ ( z )  = ('~* - ~)~ + (~ - .~*)e. r - ?  , z E C .  

Note that f has Beltrami coefficient ( = f , / f z )  ( r - ' r * ) / ( ' r * - ~ )  (of absolute 
value < 1) and hence dilatation K. Further f fixes R and 

- / ( - z ) = - f ( z ) ,  z +  =/(z)+~, z +  = f ( z ) +  "~* 
2 

These relations imply first that f maps P, onto P* and that f conjugates G, into 

G.., and thus projects to a K-quasiconformal mapping of Ca onto C~.. 

We are now going to prove the "only if" part. Consider the Banach space M 

of Beltrami coefficients; that is, M is the open unit ball in L | Let ]l" II denote 

the norm in this Banach space. A basic theorem of Ahlfors-Bers [4] asserts that 

for each /z E M, there exists a unique quasiconformal automorphism w" of 

C U {cr with Beltrami coefficient/z that fixes the points 0, 1, ~. Further for fixed 

z E C ,  
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M ~ / ~  ~ w'~(z)E C 

is a holomorphic funtion. Now let K ( w " )  be the dilatation of the quasiconformal 

automorphism w ~" (K(w" )  = (1 + I1~ II)/(1 - I I~  II)). The Banach modelled man- 
ifold M has a Kobayashi metric d. It is quite elementary to see that (because M 
is a ball) 

d (~, ,,) = ' log K ( w  ~ o (w v)-,). 

Now, the Kobayashi metric on C\{0,1} agrees with the Poincar6 metric 

(Kobayashi [6], Chapter IV). Hence any holomorphic mapping 

~: M---* C\{0, 1} 

is distance decreasing with respect to d and or. Let (a, b, c) be three distinct 
points in C. Then 

w~' (c ) -w '~(a)  
~,,~(1~ ) = w~,(b ) _ w~,(a ) 

defines a holomorphic map of M into C\{0, 1}. Thus 

~(~o~(~), ~_~)~ d ( ~ , o ) ~  1 log K 

provided that K(w")<= K. Taking the distinct points (0, 1, z), we see that 

o'(w"(z),z)<=~logK, for K(w")<=K, 

which is enough to complete the proof of the theorem. 

REMARKS. (1) We did not need to know the Kobayashi metric on M to 

obtain the above result. It sufficed to use the Poincar6 metric on the discs in M of 

the form 

{ z--Y--- ; I z I < 1,/z ~ 0}. II ~ II 

(2) Agard [1] also proved the "only if" part of the above theorem by relying 

on an accurate formula for tr. Ahifors' proof [3, Chapter III] is also more 

computational than the one given above. However,  the Ahlfors proof is more 

elementary since it does not rely on the generalized Riemann mapping theorem 

(Ahlfors-Bers [4]). 
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w A quasiconformal automorphism Wo mapping the ordered quadruple of 

distinct points (al, a2, a3, a4) onto the ordered quadruple (a*,  a~, a*, a*)  is 

called extremal if K(wo)<= K(w)  for all w with the same property. 

THEOREM 2. There exists an extremal mapping f taking the ordered quadruple 

(al, a2, a3, a4) onto the ordered quadruple (a*, a ~, a*, a*). This mapping has 

dilatation K = exp2tr(a ,  a *), and Beltrami coefficient tz = k~ /I ~ I, where k = 

(K - 1 ) / (K + 1), and r  ~ is a holomorphic quadratic differential on C U {~} 

(thus ~ is a rational]unction) with simple poles at a~, a2, a3, a4. In particular, all 

the extremal mappings are Teichmiiller mappings. The extremal mapping is unique 

if and only if for each r E U with f r ( r )  = t~ there is a unique ~'* E U with 
f r ( r * ) = a *  and p(z ,r*)=tr(a ,a*) .  In particular, there exists an r > 0  

such that every Teichmiiller mapping w with Beltrami coefficient t~ / l~  I 
with I t l < r  is the unique extremal taking Ct3{~}\{a~,a2, a3, a4} onto 
C O {o0}\{w (al), w (a2), w (a3), w (a4)}. 

PROOF. We have shown the existence of an extremal f with K ( f ) =  

exp2tr(t~,a*).  The function f constructed by formula (1) is a Teichm/iller 

mapping since the constant function is a quadratic differential for G,. Now 

assume that w is an extremal function, then K(w)=exp2tr(a ,a*) .  Let us 

replace w by w~ which is a Teichm/iller mapping in the same homotopy class as 

w: C U {o0}\{al, a2, a3, a4}---* C U {oo}\{w(a~), w(a2), w(a3), w(a,)}. Since w is 

homotopic to w~, w(a j )=  w~(a~) for j = 1,2,3,4.  Since w~ is a Teichmfiller 

mapping K(w~) <- K(w). Since o'(a, a* )  = �89 K(w), K(w~) >= K(w). By uni- 

queness of Teichmfiller mappings (see, for example, Bers [5]) w = wl. The 

dsicussion of w established the necessary and sufficient conditions for unique- 

ness of extremal mappings. 

Now let to be a fundamental domain for F centered at the origin (we are 

assuming F acts on A). Let r be chosen in such a way that the closed 

non-Euclidean ball of radius r is contained in the interior of to. Thus r satisfies 

the conditions of the theorem. 

Ar~ IMPORTANT PROBLEM. Let F be a Fuchsian group operating on U. Let 

a, b, c ~ R with a < b < c. Let /x  be an extremal Beltrami coefficient for F with 

support in U. Then w ~ is, of course, conformal in U*, the lower half plane. In 

order  to determine the Careth60dory metric on the Teichmfiller space of F, it is 

important to evaluate 

w (c) b -  
~sbup, t r kw" (a ) -  w"(c)'  ~-~- c ]" 
a < b < c  
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Estimates (lower bounds) for the above expression in terms of K ( w  ~) would be 

helpful. Theorem 2 showed that the above supremum is less than �89 ")  

eve n  in the one-dimensional Teichm/iller spaces. 

w Let us now fix our attention on the quadruple (0,1, a,m) with 

a E C\{0,1}. Then 

1 

is a quadratic differential on C U{~} with simple poles at the four points: 

0, 1, ~, ~. Let ~ = ff/I q~ I. Thus tz is, of course, a Teichm/iller differential of 

norm 1. For  z E C, I z l < l ,  we can form the normalized zfz-conformal 

automorphism of C U {~}, w z,. We have shown that for I z I small 

1 1 +__L_L~ - 
cr(w ~"(a), a )  = ~log 1 - I z l -  p(z,O). 

Let us now fix c~ and define f ( z ) =  w'~(a) .  Then 

f:  A ---> C\{O, 1} 

is a holomorphic function. Since A is simply connected, by the Monodromy 

theorem, there exists a holomorphic function h : A--+ A such that 7r o h = f. Now 

each of these three functions does not increase the Poincar6 distance. Since 

er(f(0) ,f(z))  = p(O,z) for Izl  small, we conclude that for small [z I, we have 

p(h(O),h(z)))  = p(O,z). Hence by Schwarz's lemma h is a rotation. We have 

extablished the following result. 

TIJEOREM 3. The function z ~ w ~ ( a )  is a holomorphic universal covering 

map of C\{0,1} by A that takes 0 into ~. 

COROLLARY (Agard [1]). The (infinitesimal) Poincarg metric on C\{0, 1} is 

given by 

where 

g(,, ) l d,, I, 

la; ,,ar -' 
2zr ll f fc lr162 lllr . 

PROOF. The Poincar~ metric on C\{0, 1} is defined by the invariant expres- 

sion 
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1 
1 -  Iz I :rdz' I= g(f(z ))l df(z )l, 

where f:  A---~C\{O, 1} is any covering map. Thus for our f and z = 0, 

g(ot) = tf '(o)t-'.  

But (see Ahlfors-Bers [4]) 

f'(o)= oz I 

= 27ri J ~c 

a ( a  - 
r162 1)(r 

^ a t  
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